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Most previous studies on spreading dynamics on complex networks are based on the assumption that a node
can transmit infection to any of its neighbors with equal probability. In realistic situations, an infected node can
preferentially select a targeted node and vice versa. We develop a first-order correction to the standard mean-
field theory to address this type of more realistic spreading dynamics on complex networks. Our analysis
reveals that, when small-degree nodes are selected more frequently as targets, infection can spread to a larger
part of the network. However, when a small set of hub nodes dominates the dynamics, spreading can be
severely suppressed. Our analysis yields more accurate predictions for the spreading dynamics than those from
the standard mean-field approach.
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I. INTRODUCTION

Spreading dynamics on complex networks are fundamen-
tal to many branches of science and engineering. In com-
puter science, the propagation and spreading of a virus over
the internet have always been of great concern. In biomedical
science and engineering, the transmission of electrical sig-
nals over a neuronal network is critical to its function. In
epidemiology, to understand the spreading dynamics of in-
fections on networks is a basic task. Propagation of informa-
tion over a friendship network is even relevant to political
science. Because of the importance of spreading dynamics, it
has been under extensive investigation since the beginning of
modern network science as marked by the discoveries of the
small-world �1� and the scale-free �2� topologies.

In the literature, special attention has been paid to scale-
free networks �3–9� whose degree distributions follow a
power law: P�k��k−�, where � is the degree exponent. A
basic issue concerns the existence of a critical threshold in
the transmission probability, above which spreading can oc-
cur on a global scale in the sense that a significant portion of
the network can be infected. For a typical scale-free network
with degree exponent between 2 and 3 �10�, due to the di-
vergence of the second moment of the degree distribution,
the threshold transmission probability tends to zero for a
standard two-state epidemic model �3�, indicating that any
virus can spread over the entire network, regardless of its
infectiousness. Subsequent work reveals that certain cluster-
ing structure embedded in the network can lead to a finite
threshold �4�. In addition to the threshold issue, detailed dy-
namics of virus or information spreading have also been in-
vestigated �11–13�.

In most existing studies of spreading dynamics on com-
plex networks, the underlying contact process is assumed to
be completely random, or nonselective. That is, when a node
becomes infected, it selects randomly one of its neighbors
and infects it with certain probability. �Here, all nodes in the
network that are connected to the original node are referred
to as neighboring nodes.� There are, however, many realistic
situations where the selection of a target node by an already
infected node from its neighbors is not completely random

but highly preferential. For instance, in a communication
network with a hierarchical structure, once a node in a cer-
tain level acquires a piece of information, it is more likely
for the information to be sent to some nodes in a higher
level. This preferential selection of target node is only one
aspect of spreading dynamics. Another equally important in-
gredient is the selection of an infected node by a susceptible
node that has yet to be infected. For example, in a scientific
citation network, the better known a paper, the higher the
probability that this work will be cited. This is basically the
preferential recognition �spreading� mechanism to be treated
in this paper. Another example occurs in friendship networks
where an individual is more likely to seek and accept his or
her best friends’ opinions. Such a phenomenon indeed ap-
pears to be common in human-relation networks �14�. To
better understand spreading dynamics in real-world net-
works, the preferential selections of a target node by an in-
fected node to pass on the infection and of an infected node
by a susceptible node to receive infection must be taken into
account.

In this paper, we investigate spreading dynamics with
preferential selections. We first introduce suitable parameters
to characterize the probabilities of the selections. We then
consider a generic contact-process �CP� model and obtain
analytic results for a fundamental quantity in any spreading
dynamics: the fraction of nodes in the entire network that can
be infected. Our theory predicts a surprising phenomenon:
preferential selections in fact tend to hinder effective spread-
ing. That is, in order to achieve efficient spreading so as to
make the fraction of infected nodes as large as possible, both
processes of selection should be made as uniform as pos-
sible, regardless of the degrees of the nodes. This is some-
what counterintuitive as many previous works have empha-
sized the role of hub nodes, nodes of unusually high degrees,
in shaping the spreading dynamics �3–9,11–13�. Heuristi-
cally, this contradiction can be understood as follows. When
the overall fraction of infected nodes is small, preference to
select hub nodes helps the infection to survive and to spread
by maintaining the hub nodes in a state with a high infection
probability, leading to an increased density of infected nodes.
However, when the generating rate is high and the fraction of
infected nodes is large, the hub nodes are almost always
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infected. Thus new attempts for the infection to be sent to the
hubs are in fact wasted. In this case, infecting small-degree
nodes that have lower probabilities of being infected can be
more effective for increasing the overall fraction of infected
nodes. From a different perspective, preferential selections
tend to suppress the spreading dynamics if the infection or
the virus is undesirable, and our theory provides specific sce-
narios for how selections should be done to achieve this goal.
Our theoretical predictions are verified by extensive numeri-
cal simulations on scale-free networks.

A technical contribution of our work is the development
of a set of new rate equations for spreading dynamics on
networks of arbitrary topology. We shall present evidence
that our approach yields results that agree with those from
numerical experiments more accurately than the predictions
from the standard mean-field approach. Our approach is thus
appealing to the study of network spreading dynamics, con-
sidering that the applicability of the mean-field theory to
highly heterogeneous networks has been an issue of recent
debate �15,16�.

In Sec. II, we introduce our spreading model based on
preferential selections. In Sec. III, we present a detailed
analysis leading to a set of rate equations from which the
steady-state value of the fraction of infected nodes can be
calculated. In Sec. IV, we provide numerical verifications.
Concluding remarks are presented in Sec. V.

II. MODEL

We consider the general CP model, first proposed by Har-
ris �17� and recently adapted to complex networks by Cas-
tellano and Pastor-Satorras �15� in the rate-equation frame-
work. In the model, a CP process starts from a fraction �0 of
initially infected nodes. For convenience, we say that, when
a node is infected, it carries a “particle” that can survive for
a finite amount of time. During its lifetime, a particle can
generate an “offspring” that can leave the “parent” node to
infect one of its neighbors. At each time step t, each particle
dies off with probability p, but with probability 1− p, it gen-
erates an offspring. Assume that at time t−1 node i carries a
particle. Let Vi be the set of neighbors of i. Then, at time t,
one of the nodes in Vi, say node j, receives an offspring of
the particle at node i and becomes infected. To incorporate
selectivity in the CP model, we assume that the probability
that node j is selected as the “target” node depends on its
degree, as follows:

�out = kj
�� �

l�Vi

kl
�, �1�

where � is an adjustable parameter. If ��0 ���0�, a node
with large �small� degree is more likely to be selected as the
target for the particle at an infected node to pass on its off-
spring to. Say node j is selected. If it is already occupied by
a particle, the new particle from node i dies. If node j is not
occupied, it accepts the new particle with the following re-
ceiving probability:

�in = ki
�/max�km

� �m � Vj� , �2�

where Vj denotes the set of neighboring nodes of node j. For
��0, node j is more likely to accept a particle from a node

with larger degree, i.e., a better-connected node �e.g., a
better-known paper in a scientific citation network� has a
higher probability to infect other nodes. The process repeats
insofar as there are still particles in the network. The spread-
ing dynamics terminate when there is no particle left.

III. THEORETICAL ANALYSIS

Our goal is to derive a set of rate equations governing the
spreading dynamics on a complex network, which can be
regarded as a first-order correction to the standard mean-field
approach. We consider the quantity �k�t�, the density of the
infected nodes �nodes that host particles� of degree k at time
t. The average density at time t is ��t�=�k�k�t�P�k�, where
P�k� is the degree distribution of the network. The steady-
state solution � thus quantifies the spreading dynamics, and
its value can be used to compare the extent of the dynamics
under different parameters. In general, we find that the value
of � can be significantly greater than zero, indicating that, at
each time step, a susceptible node can be selected as a target
by many infected nodes. This feature is usually unaccounted
for in the standard mean-field treatment, where a susceptible
node is assumed to be selected only once at each time step.

Our rate equation can be written as

�t�k�t� = − p�k�t� + �1 − �k�t���k, �3�

where �k is the probability that a node of degree k is selected
and accepts a new particle. Note that the first term is the
fraction of infected nodes that become susceptible at time t,
and the second term is the fraction of susceptible nodes that
become infected at time t. The steady-state solution is

�k = �k/��k + p� . �4�

The standard mean-field treatment neglects the density cor-
relation among different nodes �3�. Generally, a susceptible
node capable of accepting a new particle can be selected
many times by infected nodes that are connected to it, but
only one selection counts. Thus, to take into account the
density correlation, we identify the set of nodes with degree
k and consider the number of different nodes that have been
selected, or equivalently, consider the probability that a node
of degree k is selected at least once, which is �k. The num-
ber of nodes of degree k is NP�k�. For each event of selec-
tion, the probability that one such node is not selected is 1
− �NP�k��−1. Let Nk be the total number of the selection
events. The probability that a node of degree k is not selected
for all the Nk events is 	1− �NP�k��−1
Nk. We thus have

�k = 1 − 	1 − �NP�k��−1
Nk. �5�

To determine Nk, we note that �out is the probability that,
associated with each link, a node is selected as a target node.
The probability that a node of degree k is selected as a target
is thus proportional to kk�=k�+1. The total number of in-
fected nodes of degree k� that can pass the infection onto
other nodes is

NP�k���k��t��1 − p� .

Let g�k ,k�� be the probability that a node of degree k accepts
a particle from a node of degree k�. Taking into account these
three factors and summing over k�, we have
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Nk =
P�k�k�+1

�k�+1�
N�1 − p��

k�

�P�k���k��t��g�k,k�� . �6�

The effect of the network topological structure on spreading
dynamics has been manifested in Eq. �6�, i.e., how nodes of
different degrees interact with each other in the process. In
order to determine g�k ,k��, we note that, for a node of degree
k, the probability that it can be reached by following a ran-
dom link is Q�k�= P�k�k / �k�. Here we assume that the net-
work has a constant correlation profile so that Q�k� can be
written in the above way. If the correlation profile is not
constant, Q�k� should be written explicitly in the form of
Q�k ,k��= P�k �k�� and the corresponding terms in Eqs. �7�
and �8� should be changed accordingly to Q�· ,k��. Thus our
results are expected to be valid for general correlation pro-
files.

First consider the case of ��0. As shown in Fig. 1, for a
susceptible node, say node j, we have �in= �k� /kmax� ��, where
kmax� denotes the maximum degree of all neighboring nodes
of node j. For a given pair of nodes, one of degree k and
another of degree k�, the probability that the degree kmax�
	k� is the maximum degree among all neighboring nodes of
node j is

Cg�k,k��Q�k� 
 kmax� �k−2Q�k� = kmax� � ,

where Cg�k ,k�� is a normalization constant. Summing over
all possible kmax� yields

g�k,k�� = Cg�k,k�� �
kmax� 	k�


� k�

kmax�
��

�Q�k� 
 kmax� �k−2Q�k� = kmax� �� . �7�

For ��0, we need to consider the node of minimum degree
among all neighboring nodes of a node of degree k�. Similar
steps of reasoning give

g�k,k�� = Cg�k,k�� �
kmin� 
k�


� k�

kmin�
��

�Q�k� 	 kmin� �k−2Q�k� = kmin� �� . �8�

Equations �4�–�8� are the set of equations that can be used to
calculate the steady-state solution �k for any given set of
parameters �p , P�k� ,� ,��, from which �=�k�kP�k� can be
determined.

Our analysis assumes a network of finite size N. However,
the final result � should be N independent if it is large
enough. This is so because for large N we have

�k = 1 − 	1 − 1/�NP�k��
Nk � 1 − exp	− Nk/�NP�k��
 ,

where the ratio Nk /N is independent of N �Eq. �6��. An in-
teresting observation is that, if Nk / �NP�k���1, we have �k
�Nk / �NP�k��, which reduces to the typical situation treat-
able by the standard mean-field theory �15,16�.

IV. NUMERICAL VERIFICATION

A. Case I: �=0

To test the applicability of Eqs. �4�–�8�, we now consider
two exemplary cases. For each case, we shall calculate �
from Eqs. �4�–�8� as a function of some control parameter
and compare the values of � with those from direct numeri-
cal simulations. The first case is �=0 so that g�k ,k��=1 and
the summation in Eq. �6� is simply �. We obtain

Nk = �N�1 − p�P�k�k�+1/�k�+1� .

Substituting this relation in Eqs. �4� and �5� yields a nonlin-
ear self-consistent equation in �, which can then be solved
numerically, say, by an iterative procedure. To be specific,
we use a scale-free network generated by the preferential
attachment rule �2�, which has an algebraic degree distribu-
tion P�k��k−3. The size of the network is N=104 and aver-
age degree �k�=6. A typical example of the evolution of ��t�
and its approach to a steady-state value is shown in Fig. 2.
Figure 3 shows, for p=0.2, values of � versus the parameter
� from the theoretical self-consistent equation �solid curve�
and from direct numerical simulations �open squares�, which
agree with each other very well. We observe that, for ��0,
� has a weak dependence on � in the sense that, as � is
decreased from zero, � varies only slightly. However, � de-
creases rapidly as � is increased from zero. Physically, this
means that, for ��0 so that nodes with relatively large de-
grees �e.g., hubs� are more likely to receive new particles, the
spreading dynamics is in fact suppressed, which is somewhat
counterintuitive as the hub nodes might be regarded as
highly effective for spreading the infection. This behavior
can nonetheless be understood by noting that there is typi-
cally a high probability for a hub node to be infected. New
particles, when being sent to a hub node, will then have a
high probability to die off, effectively reducing the probabil-
ity of infection generation. Nodes with smaller degrees are
generally less likely to be infected. Thus, new particles sent
to these nodes will be more likely to be accepted. In Fig. 3,

FIG. 1. �Color online� Schematic illustration of preferential se-
lections of a target susceptible node �open circle� by an infected
node �filled circle� and of an infected node by a node susceptible to
receiving the infection.
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we have also shown the predicted values of � from the stan-
dard mean-field theory �dashed line�. We observe that, al-
though the standard mean-field result appears to be reason-
able as compared with numerical results, our approach yields
results that better agree with the numerics.

B. Case II: �=0

For �=0, the quantity g�k ,k��, as given by Eqs. �7� and
�8�, depends on the degree distribution only. An example of
the theoretically predicted relation between � and the control
parameter � is shown in Fig. 4 �solid curve�, together with
results from direct numerical simulations. Also shown in Fig.

4 are predictions from the standard mean-field approach.
Again we observe a better agreement between our theory and
numerics. The nonsmooth behavior between � and � at �
=0 can be understood, as follows. For ��0, a node is more
likely to receive and accept offspring particles from its
neighbors with relatively large degrees. The opposite occurs
for ��0. There is thus a change of the set of neighboring
nodes from which a node can receive a new particle. We also
observe that, for � not too close to zero, the probability
g�k ,k�� is generally much smaller than unity, resulting in
effectively a smaller probability of generating offsprings and,
consequently, a rapid decrease of � from its value for �=0 as
� either is decreased or is increased from �=0.

C. General case: �Å0 and �Å0

What happens when both � and � are not zero? Figure 5
shows, in the �� ,�� plane, various contours of �. When both
� and � are negative so that nodes with small degrees are
preferably chosen as targets and senders, the value of � is
high and it changes little. This is due to the particular topol-
ogy of scale-free networks: there are substantially more
nodes with small degrees in the network. For ��0 but �
�0, new particles are preferentially sent to hubs that repre-
sent, however, a small set of nodes in the network. For larger
positive values of �, new particles are sent to nodes of larger
degrees, the number of which is, however, even smaller. In

FIG. 2. �Color online� A typical example of the evolution of ��t�
toward steady state with �=0 and �=1. The solid line indicates one
network realization and the dashed one indicates the average ���t��
over 100 network realizations. The inset shows the long-time be-
havior of averaged density. In the following simulation, for each
case, the spreading process is evolved for sufficiently long time
where ��t� becomes nearly a constant �with small and time-
independent fluctuations�, indicating a steady state. Then � is taken
as the average of ��t� from the last 200 time steps. An additional
average over 100 network realizations is taken in the calculation of
�.
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FIG. 3. �Color online� For a representative scale-free network,
for �=0, steady-state value � of the fraction of infected nodes ver-
sus parameter � �for p=0.2�. The solid curve is from our theory.
Dashed curve represents the standard mean-field prediction. Open
squares are data points from direct numerical simulations.
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FIG. 4. �Color online� For the same scale-free network in Fig. 3
and for �=0, � versus �. The key is the same as in Fig. 3.
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FIG. 5. �Color online� Numerically obtained contour plots of �
in the �� ,�� parameter plane for p=0.1.
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this case, to maintain the same level of infection, � needs to
be larger so as to increase the probability to receive new
particles from nodes of larger degrees. A similar behavior
occurs for the ��0 and ��0 region. For ��0 and ��0,
new particles are more likely to be both sent to and received
from hub nodes, effectively restricting the dominant spread-
ing dynamics to a small subset of nodes in the network. In
this case, the value of � is much smaller as compared with its
values in the regions where both � and � are negative. Say
there is an increase in � in the ��0 and ��0 region. In
order to achieve the same value of �, � needs to be reduced
so that more nodes of smaller degrees can contribute to the
spreading process. The general observation is that, to maxi-
mize the efficiency of spreading, the network should be de-
signed so as to allow for more small-degree nodes to play an
active role in the dynamical process.

V. CONCLUDING REMARKS

In summary, we have investigated spreading dynamics
with preferential selection on complex networks with hetero-
geneous degree distributions. Our theoretical approach can

be considered as a first-order correction of the standard
mean-field theory in the field of spreading dynamics, i.e., we
take into account the density correlations among different
nodes. We have presented evidence that our theory yields
more accurate predictions than the standard one. The key
finding is that spreading can be severely suppressed when a
small set of hub nodes dominates the dynamics. For efficient
spreading, more nodes with relatively small degrees should
be active in serving as “exchanging stations” for transferring
the infection.

Spreading dynamics is fundamental to various networks
arising in natural and social sciences. Efficient spreading,
depending on applications, may be either desirable or unde-
sirable. Our work yields insights into the dynamics of
spreading that can be useful for designing networks and pro-
tocols to achieve either goal.
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